What is the area of rhombus ABCD ? Enter your answer in the box. Do not round at any steps. units² Rhombus A B C D on a coordinate plane with vertex A at 1 comma 0, vertex B at 7 comma negative 2, vertex C at 1 comma negative 4, and vertex D at negative 5 comma negative 2. Point P is at negative 3.8 comma 1.6. Dashed segments join point P to point D and point P to point A, forming right angle D P A.

Respuesta :

We know, that when d₁ and d₂ are diagonals, then area of rhombus is:

[tex]A = \frac{1}{2}\cdot d_1\cdot d_2[/tex]

In this case we have:

[tex]d_1 = |7-(-5)|=|7+5|=|12|=\boxed{12}\\\\d_2 = |0-(-4)|=|0+4|=|4|=\boxed{4}[/tex]

so the area:

[tex]A=\frac{1}{2}\cdot d_1\cdot d_2=\frac{1}{2}\cdot 12\cdot 4=6\cdot4=\boxed{24\,\,\text{units}^2}[/tex]
Ver imagen WojtekR