Respuesta :
[tex]\bf \left.\qquad \qquad \right.\textit{negative exponents}\\\\
a^{-{ n}} \implies \cfrac{1}{a^{ n}}
\qquad \qquad
\cfrac{1}{a^{ n}}\implies a^{-{ n}}
\qquad \qquad
a^{{{ n}}}\implies \cfrac{1}{a^{-{{ n}}}}\\\\
-------------------------------[/tex]
[tex]\bf \cfrac{\frac{x}{3y}\cdot \frac{3xy}{5}}{\frac{4y^2}{5x^2}}\implies \cfrac{\quad \frac{3x^2y}{15y}\quad }{\frac{4y^2}{5x^2}}\implies \cfrac{3x^2y}{15y}\cdot \cfrac{5x^2}{4y^2}\implies \cfrac{\underline{15} x^4y}{\underline{15}\cdot 4y^3}\implies \cfrac{x^4y^1}{4y^3} \\\\\\ \cfrac{x^4}{4y^3y^{-1}}\implies \cfrac{x^4}{4y^{3-1}}\implies \cfrac{x^4}{4y^2}[/tex]
[tex]\bf \cfrac{\frac{x}{3y}\cdot \frac{3xy}{5}}{\frac{4y^2}{5x^2}}\implies \cfrac{\quad \frac{3x^2y}{15y}\quad }{\frac{4y^2}{5x^2}}\implies \cfrac{3x^2y}{15y}\cdot \cfrac{5x^2}{4y^2}\implies \cfrac{\underline{15} x^4y}{\underline{15}\cdot 4y^3}\implies \cfrac{x^4y^1}{4y^3} \\\\\\ \cfrac{x^4}{4y^3y^{-1}}\implies \cfrac{x^4}{4y^{3-1}}\implies \cfrac{x^4}{4y^2}[/tex]