Suppose that people's heights (in centimeters) are normally distributed with a mean of 170 and a standard deviation of 5. We find the heights of 50 people.
can now calculate the Zmin and Zmax using Z=(X-mean)/standard deviation Zmin=(165-170)/5=-1 Zmax=(175-170)/5=+1 From normal probability tables, P(z<Zmin)=P(z<-1)=0.15866 P(z<Zmax)=P(z<+1)=0.84134 P(165<x<175)=P(Zmin<z<Zmax)=0.84134-0.15866= 0.68269