WILL GIVE BRAINIEST ANSWER IF ANSWER IS CORRECT
Arrange these functions from the least to the greatest value based on the average rate of change in the specified interval. Tiles f(x) = x + 4 over the interval [4, 5]f(x) = 3x − 7 over the interval [-3, 7]f(x) = 9x + 1 over the interval [-5, -2]f(x) = 2x + 9 over the interval [1, 2]

Respuesta :

f(x) = x+4
f(4) = 8, f(5) = 9
Change = 1

f(x) = 3x-7
f(-3) = -16, f(5) = 8
Change = 24/8 = 3

f(x) = 9x+1
f(-5) = -44, f(-2) = -17
Change = 27/3 = 9

f(x) = 2x+9
f(1) = 11, f(2) = 13
Change = 2

In order: f(x) = 9x+1, f(x) = 3x-7, f(x) = 2x+9, f(x) = x+4

Answer::

Average rate of change(A(x)) of f(x) over the interval [a, b] is given by:

[tex]A(x) = \frac{f(b)-f(a)}{b-a}[/tex]

As per the statement:

Given :

f(x) = x+4 over the interval [4, 5]

At x = 4

f(4) = 8

at x = 5

f(5) = 9

Using the above formula: we have;

[tex]A_1(x) = \frac{f(5)-f(4)}{5-4} = \frac{9-8}{1} = \frac{1}{1} = 1[/tex]

Similarly for :

f(x) = 3x-7 over the interval [-3, 7]

at x = -3

f(-3) = -16

At x = 7:

f(7) = 14

then;

[tex]A_2(x) = \frac{f(7)-f(-3)}{7-(-3)} = \frac{14+16}{10} = \frac{30}{10} = 3[/tex]

For:

f(x) = 9x + 1 over the interval [-5, -2]

At x = -5

f(-5) = -44

At x = -2

f(-2) = -17

then;

[tex]A_3(x) = \frac{f(-2)-f(-5)}{-2-(-5)} = \frac{-17+44}{3} = \frac{27}{3} =9[/tex]

For:

f(x) = 2x + 9 over the interval [1, 2]

At x = 1

f(1) = 11

At x =2

f(2)= 13

then;

[tex]A_4(x) = \frac{f(2)-f(1)}{2-1} = \frac{13-11}{1} = \frac{2}{1} =2[/tex]

We have to Arrange these functions from the least to the greatest value based on the average rate of change in the specified interval.

[tex]A_1 < A_4< A_2<A_3[/tex]

⇒[tex]1< 2< 3< 9[/tex]

⇒x+4 < 2x + 9 <  3x-7 < 9x + 1

Therefore, the least to the greatest value based on the average rate of change in the specified interval is:

f(x) = x+4, f(x) = 2x+9, f(x) = 3x-7, f(x) = 9x+1,