Respuesta :

Answer:

[tex]3 \log 2[/tex]

Step-by-step explanation:

Given expression:

[tex]\log 2 + \log \left(\dfrac{3}{2}\right)+\log \left(\dfrac{4}{3}\right)+\log \left(\dfrac{5}{4}\right)+\log \left(\dfrac{6}{5}\right)+\log \left(\dfrac{7}{6}\right)+\log \left(\dfrac{8}{7}\right)[/tex]

[tex]\textsf{Apply the \underline{Log Product Law}}: \quad \log_ax + \log_ay=\log_axy[/tex]

[tex]\implies \log \left(2 \cdot \dfrac{3}{2} \cdot \dfrac{4}{3} \cdot \dfrac{5}{4} \cdot \dfrac{6}{5} \cdot \dfrac{7}{6} \cdot \dfrac{8}{7}\right)[/tex]

Cross out common factors:

[tex]\implies \log \left(\diagup\!\!\!\!2 \cdot \dfrac{\diagup\!\!\!\!3}{\diagup\!\!\!\!2} \cdot \dfrac{\diagup\!\!\!\!4}{\diagup\!\!\!\!3} \cdot \dfrac{\diagup\!\!\!\!5}{\diagup\!\!\!\!4} \cdot \dfrac{\diagup\!\!\!\!6}{\diagup\!\!\!\!5} \cdot \dfrac{\diagup\!\!\!\!7}{\diagup\!\!\!\!6} \cdot \dfrac{8}{\diagup\!\!\!\!7}\right)[/tex]

Therefore:

[tex]\implies \log 8[/tex]

Factor the number:  8 = 2³

[tex]\implies \log 2^3[/tex]

[tex]\textsf{Apply the \underline{Log Power Law}}: \quad \log_ax^n=n\log_ax[/tex]

[tex]\implies 3 \log 2[/tex]