Find the volume and round to the nearest tenth as needed

Answer: 1962.4 cubic mm
Step-by-step explanation:
The volume of the larger cone is [tex]V=\frac{1}{3}(\pi)(10^{2})(20)=\frac{2000\pi}{3}[/tex]
The volume of the smaller cone is [tex]V=\frac{1}{3}(\pi)(3^{2})(14)=42\pi[/tex].
So, the volume is [tex]\frac{2000\pi}{3}-42\pi \approx \boxed{1962.4}[/tex]