Respuesta :

Answer:

A

Step-by-step explanation:

[tex]\frac{10}{9+\sqrt{7} }[/tex]

To rationalise the denominator multiply the numerator and denominator by the conjugate of the denominator.

the conjugate of 9 + [tex]\sqrt{7}[/tex] is 9 - [tex]\sqrt{7}[/tex]

= [tex]\frac{10(9-\sqrt{7}) }{(9+\sqrt{7})(9-\sqrt{7}) }[/tex] ← expand denominator using FOIL

= [tex]\frac{90-10\sqrt{7} }{81-7}[/tex]

= [tex]\frac{90-10\sqrt{7} }{74}[/tex] ( divide terms on numerator/ denominator by 2 )

= [tex]\frac{45-5\sqrt{7} }{37}[/tex] → A

Paounn

Answer:

A[tex]\frac{45-5\sqrt7}{37}[/tex]

Step-by-step explanation:

Easy. First let's multiply numerator and denominator by [tex]9-\sqrt7[/tex] since we will create a difference of squares to get rid of the root, then start doing the calculations

[tex]\frac{10(9-\sqrt7)}{(9+sqrt7)(9-\sqrt7)}=\frac{10(9-\sqrt7)}{81-7} = \frac{10(9-\sqrt7)}{74} =\\\frac{5(9-\sqrt7)}{37}=\frac{45-5\sqrt7}{37}[/tex]