Evaluate using substitution ∫(2x^5+6x)^3(5x^4+3)dx where b=0 and a=-1
I got to here and then got stuck u=5x^4+3 du=x^5+3x+C ∫(2x^5+6x)^3 u 1/(x^5+3x+C) ∫(x^5+3x)^3 u
well, i'll start from the top remember that (ab)^c=(a^c)(b^c)
2x^5+6x=2(x^5+3x) the deritivive of (x^5+3x) is 5x^4+3 so therefor u=(x^5+3x) du=5x^4+3 dx so ∫(2)^3(x^5+2x)^3(5x^4+3)dx ∫8(x^5+2x)^3(5x^4+3)dx 8∫u^3du [tex]8 \frac{u^{3+1}}{3+1} [/tex] [tex]8 \frac{u^{4}}{4} [/tex] [tex] 2u^{4} [/tex] sub back [tex] 2(x^5+3x)^{4} [/tex]