Respuesta :

Answer:

000

Step-by-step explanation:

000

Answer:

[tex]$\lim_{x\to 0^+} \tan(x) - \frac{1}{x^2} = -\infty$[/tex]

Step-by-step explanation:

[tex]$\lim_{x\to 0^+} \tan(x) - \frac{1}{x^2} = \lim_{x\to 0^+} \tan(x) - \lim_{x\to 0^+} \frac{1}{x^2} $[/tex]

and

[tex]$\lim_{x\to 0^+} \tan(x) = \tan(0) = 0$[/tex]

[tex]$\lim_{x\to 0^+} \frac{1}{x^2} = +\infty$[/tex]

Therefore,

[tex]$\lim_{x\to 0^+} \tan(x) - \frac{1}{x^2} = -\infty$[/tex]