Respuesta :
Answer/Step-by-step explanation:
Solve
Before we begin graphing, we have to solve the equation. You cannot just graph the equation as it is now. Let us simplify it:
[tex]56x-19=-8y+5[/tex]
[tex]56x-19+19=-8y+5+19[/tex] [tex]\mathrm{Add\:}19\mathrm{\:to\:both\:sides}[/tex]
[tex]56x=-8y+24[/tex]
[tex]\frac{56x}{56}=-\frac{8y}{56}+\frac{24}{56}[/tex] [tex]\mathrm{Divide\:both\:sides\:by\:}56[/tex]
- [tex]\frac{56x}{56}=-\frac{8y}{56}+\frac{24}{56}[/tex]
- [tex]\frac{56x}{56} = x\: (\mathrm{or}\: 1)[/tex]
- [tex]-\frac{8y}{56}+\frac{24}{56}[/tex]
- [tex]\frac{-8y+24}{56}[/tex]
- [tex]\mathrm{Factor\:-8y+24}\\\mathrm{Rewrite\:as}\\=-8y+8\cdot \:3\\\mathrm{Factor\:out\:the\:common\:term\:8}\\=8\left(-y+3\right)\\\\=\frac{8\left(-y+3\right)}{56}\\\mathrm{Cancel\:the\:common\:factor:}\:8\\=\frac{-y+3}{7}[/tex]
[tex]\bold{x=\frac{-y+3}{7}}[/tex]
Graph
Now, we can graph. Graph the line using the slope and y-intercept, or two points.
[tex]\mathrm{Slope}: -7\\y-\mathrm{intercept}: (0,3)[/tex]
[tex]x\\0\\1[/tex] [tex]y\\3\\-4[/tex]
