Respuesta :
x³ y² + 8 x y² - 5 x² - 40 =
= x y² ( x² + 8 ) - 5 ( x² + 8 ) =
= ( x² + 8 ) ( x y² - 5 )
Answer:
On of the factors is:
C ) ( x y² - 5 )
= x y² ( x² + 8 ) - 5 ( x² + 8 ) =
= ( x² + 8 ) ( x y² - 5 )
Answer:
On of the factors is:
C ) ( x y² - 5 )
Answer:
[tex](xy^2-5)\text{ is one factor of above polynomial}[/tex]
Step-by-step explanation:
Given the polynomial
[tex]x^3y^2+8xy^2-5x^2-40[/tex]
we have to select the option which is one of the factor of above polynomial.
[tex]x^3y^2+8xy^2-5x^2-40[/tex]
[tex]xy^2(x^2+8)-5(x^2+8)[/tex]
[tex](xy^2-5)(x^2+8)[/tex]
[tex]\text{Hence, }(xy^2-5)\text{ is one factor of above polynomial}[/tex]
∴ Option 3 is correct