Answer:
The answer is "[tex]8.5\times 10^{-9}[/tex]".
Step-by-step explanation:
Following are the calculation of the multinomial distribution probability:
[tex]\to (\frac{10!}{(2! \times 5! \times 3!)})\times(0.2)^2 \times(0.5)^5 \times (0.3)^3 \\\\ \to (\frac{10!}{(2! \times 5! \times 3!)})\times 0.04 \times 0.03125 \times 0.027\\\\ \to (\frac{10\times9\times8 \times7 \times6 \times5! }{(2! \times 5! \times 3!)})\times 3.37 \times 10^{-5}\\\\ \to (\frac{10\times9\times8 \times7 \times6 }{(2 \times 1 \times 3 \times 2 \times 1 )})\times 3.37 \times 10^{-5}\\\\[/tex]
[tex]\to (\frac{10\times9\times8 \times7 }{(2)})\times 3.37 \times 10^{-5}\\\\ \to (5 \times 9 \times 8 \times 7 )\times 3.37 \times 10^{-5}\\\\ \to 45 \times 56 \times 3.37 \times 10^{-5}\\\\ \to 45 \times 56 \times 3.37 \times 10^{-5}\\\\ \to 2520 \times 3.37 \times 10^{-5}\\\\\to 8492.4 \times 10^{-5}\\\\\to 8.4924\times 10^{-9}\\\\ \to 8.5\times 10^{-9}[/tex]