Respuesta :

9514 1404 393

Answer:

  f^-1(x) = 4+∛((x-6)/5)

Step-by-step explanation:

To find the inverse function, solve ...

  x = f(y)

then write the answer in functional form.

  [tex]\displaystyle x=f(y)\\\\x=5(y-4)^3+6\\\\x-6=5(y-4)^3\\\\\frac{x-6}{5}=(y-4)^3\\\\\sqrt[3]{\frac{x-6}{5}}=y-4\\\\y=4+\sqrt[3]{\frac{x-6}{5}}\\\\\boxed{f^{-1}(x)=4+\sqrt[3]{\frac{x-6}{5}}}[/tex]

__

The graph shows the function and its inverse to be reflections of each other in the line y=x, as they should be.

Ver imagen sqdancefan