Respuesta :

Answer:

  x = 3⁸  

Step-by-step explanation:

Step(i):-

Given that

              [tex]log _{3} (x)+ log_{9} (x) =12[/tex]

             [tex]log _{3} (x)+ log_{3^{2} } (x) =12[/tex]

  we know that

        [tex]log^{a} _{b} = \frac{loga}{logb}[/tex]

         [tex]log _{3} (x)+ \frac{logx}{log3^{2} } =12[/tex]

Step(ii):-

Apply log xⁿ = nlogx

      [tex]log _{3} (x)+\frac{1}{2} \frac{logx}{log3 } =12[/tex]

    [tex]log _{3} (x)+ \frac{1}{2} log_{3 } (x) =12[/tex]

   [tex]log _{3} (x)+ log_{3 } (x)^{\frac{1}{2} } =12[/tex]      ( ∵  log xⁿ = nlogx)

 Apply log(ab) = loga+logb

 [tex]log _{3} (x (x^{\frac{1}{2} }) =12[/tex]

  [tex]log _{3} ( (x^{\frac{3}{2} }) =12[/tex]

[tex]\frac{3}{2} log _{3} ( x) =12[/tex]

 [tex]\frac{1}{2} log _{3} ( x) = 4[/tex]

[tex]log _{3} ( x) = 8[/tex]

we know that  [tex]log _{b} ( x) = a[/tex]    ⇒  x = bᵃ

∴    x = 3⁸