In ΔEFG, \overline{EG}
EG
is extended through point G to point H, \text{m}\angle EFG = (2x+1)^{\circ}m∠EFG=(2x+1)

, \text{m}\angle FGH = (6x+2)^{\circ}m∠FGH=(6x+2)

, and \text{m}\angle GEF = (x+19)^{\circ}m∠GEF=(x+19)

. Find \text{m}\angle GEF.m∠GEF.

Respuesta :

Answer:

25

Step-by-step explanation:

(6x+2)=(x+19)+(2x+1)

6x+2)=(x+2x)+(19+1)

6x+2=  3x+20

−3x+2= −3x

3x+2= 20

3x=  18

x=  6

m∠GEF = x+19 = (6)+19 = 25  

Yoyogr

Answer:

X+19=(6)+19=25

Step-by-step explanation: