Respuesta :

Answer:

see explanation

Step-by-step explanation:

∠ AOB = 360° - 264° = 96°

The altitude OM bisects ∠ AOB and the base AB

(a)

∠ MOB = 0.5 × 96° = 48°

Using the cosine ratio in right triangle MOB

cos48° = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{OM}{OB}[/tex] = [tex]\frac{18}{r}[/tex] ( OB is the radius r of the circle )

Multiply both sides by r

r × cos48° = 18 ( divide both sides by cos48° )

r = [tex]\frac{18}{cos48}[/tex] ≈ 27 cm ( to the nearest cm )

(b)

Using the tangent ratio in the right triangle MOB

tan48° = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{MB}{OM}[/tex] = [tex]\frac{MB}{18}[/tex] ( multiply both sides by 18 )

18 × tan48° = MB then

AB = 2 × MB = 2 × 18 × tan48° = 36 × tan48° ≈ 40 cm ( to nearest cm )