Respuesta :

Answer:

[tex]k=1\text{ or } k=4[/tex]

Step-by-step explanation:

We can use the Polynomial Remainder Theorem. It states that if we divide a polynomial P(x) by a binomial in the form (x - a), then our remainder will be P(a).

We are dividing:

[tex](x^2+5x+7)\div(x+k)[/tex]

So, a polynomial by a binomial factor.

Our factor is (x + k) or (x - (-k)). Using the form (x - a), our a = -k.

We want our remainder to be 3. So, P(a)=P(-k)=3.

Therefore:

[tex](-k)^2+5(-k)+7=3[/tex]

Simplify:

[tex]k^2-5k+7=3[/tex]

Solve for k. Subtract 3 from both sides:

[tex]k^2-5k+4=0[/tex]

Factor:

[tex](k-1)(k-4)=0[/tex]

Zero Product Property:

[tex]k-1=0\text{ or } k-4=0[/tex]

Solve:

[tex]k=1\text{ or } k=4[/tex]

So, either of the two expressions:

[tex](x^2+5x+7)\div(x+1)\text{ or } (x^2+5x+7)\div(x+4)[/tex]

Will yield 3 as the remainder.