The vertex of a quadratic function is (6, 2), and the y-intercept of the function is (0, −70). The equation of the function in vertex form, f(x)=a(x−h)2+k, is shown.−70=a(0−6) squared+2

Respuesta :

Answer:

The equation of the function in vertex form is represented by [tex]y = -2\cdot (x-6)^{2}+2[/tex].

Step-by-step explanation:

Let [tex](h,k) = (6,2)[/tex] and [tex](x,y) = (0, - 70)[/tex], now we substitute on the equation of the quadratic function and solve for [tex]a[/tex]:

[tex]y = a\cdot (x-h)^{2}+k[/tex]

[tex]-70 = a\cdot (0-6)^{2}+2[/tex]

[tex]-70 = 36\cdot a + 2[/tex]

[tex]36\cdot a = -72[/tex]

[tex]a = -2[/tex]

Therefore, the equation of the function in vertex form is represented by [tex]y = -2\cdot (x-6)^{2}+2[/tex].

Answer:

THE ANSEWR IS BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

Step-by-step explanation:

b the seconed option