Respuesta :
Answer:
The value of the expression is 2021
Step-by-step explanation:
Compute the numerical value of the expression
(4042 + 4040 + 4038 + … + 6 + 4 + 2) - (4041 + 4039 + 4037 + … + 5 + 3 + 1).
Rearranging the positive and negative terms:
(4042-4041)+(4040-4039)+(4038-4037)+...(2-1)
All the partial subtractions are 1:
1 + 1 + 1 + .... + 1
This sequence is repeated 4042/2=2021 times, thus the value of the expression is 2021
The simplified numerical value of the expression: (4042 + 4040 + 4038 + … + 6 + 4 + 2) −(4041 + 4039 + 4037 + … + 5 + 3 + 1) is 2021 and this can be determined by using the properties of arithmetic progression.
Given :
Expression -- (4042 + 4040 + 4038 + … + 6 + 4 + 2) −(4041 + 4039 + 4037 + … + 5 + 3 + 1)
Let the given expression be written in the form of two arithmetic progressions. That is:
[tex]= \rm A_1-A_2[/tex]
where [tex]\rm A_1[/tex] is (4042 + 4040 + 4038 + … + 6 + 4 + 2) and [tex]\rm A_2[/tex] is (4041 + 4039 + 4037 + … + 5 + 3 + 1).
First, determine the number of terms in progression [tex]\rm A_1[/tex] and [tex]\rm A_2[/tex].
For progression [tex]\rm A_1[/tex] :
[tex]\rm 2 = 4042+(n-1)(-2)[/tex]
-4040 = -2(n - 1)
2020 = n - 1
2021 = n
For progression [tex]\rm A_2[/tex]:
[tex]1 = 4041+(n-1)(-2)[/tex]
-4040 = -2(n - 1)
2020 = n - 1
n = 2021
Sum of n terms for progression [tex]\rm A_1[/tex].
[tex]\rm S_n = \dfrac{2021}{2}\times (2(4042)+(2021-1)(-2))[/tex]
[tex]\rm S_n = 2021(4042-2020)[/tex]
[tex]\rm S_n = 2021\times 2022[/tex]
[tex]\rm S_n = 4086462[/tex]
Sum of n terms for progression [tex]\rm A_2[/tex].
[tex]\rm S'_n = \dfrac{2021}{2}\times (2(4041)+(2021-1)(-2))[/tex]
[tex]\rm S'_n=2021\times (4041-2020)[/tex]
[tex]\rm S'_n=2021\times (2021)[/tex]
[tex]\rm S'_n=4084441[/tex]
Now, the value of the expression [tex]\rm A_1-A_2[/tex] is:
[tex]= \rm A_1-A_2[/tex]
= 4086462 - 4084441
= 2021
So, the simplified numerical value of the expression: (4042 + 4040 + 4038 + … + 6 + 4 + 2) −(4041 + 4039 + 4037 + … + 5 + 3 + 1) is 2021.
For more information, refer to the link given below:
https://brainly.com/question/25213710