Answer:
[tex]\frac{20}{3}[/tex]
Step-by-step explanation:
we have : lines 2 x + 4 y = 0 and 2 x + y = 10
Let ,
2 x + 4 y = 0............. (1)
2 x + y = 10...............(2)
solve these equations for x and y
Now subtract (2) from (1) ,we get
3y=-10
⇒y = [tex]\frac{-10}{3}[/tex]
Put the value of y in (1) , we get
2x+4([tex]\frac{-10}{3}[/tex]) = 0
⇒2x= [tex]\frac{40}{3}[/tex]
⇒x=[tex]\frac{20}{3}[/tex]
∴ Point of intersection is [tex](\frac{20}{3},\frac{-10}{3} )[/tex].
Hence,the x-coordinate of that point is [tex]\frac{20}{3}[/tex].