Answer:
The correct option is;
0.28
Step-by-step explanation:
The given parameters are;
The mean score for Michael, [tex]\bar x _1[/tex] = 150
The standard deviation, σ₁ = 30
The mean score for Alan, [tex]\bar x _2[/tex] = 165
The standard deviation, σ₂ = 15
Taking n₁ = n₂ = 1
[tex]z=\dfrac{(\bar{x}_{1}-\bar{x}_{2})-(\mu_{1}-\mu _{2} )}{\sqrt{\dfrac{\sigma_{1}^{2} }{n_{1}}-\dfrac{\sigma _{2}^{2}}{n_{2}}}}[/tex]
Taking μ₁ - μ₂ = 0
[tex]z=\dfrac{(150-165)}{\sqrt{\dfrac{30^{2} }{1}-\dfrac{15^{2}}{1}}} \approx -0.577[/tex]
The p-value for a z-score of -0.577 from the z-table is 0.28434
Therefore, the probability that Michael, with mean score, [tex]\bar x _1[/tex] = 150 will have a greater score than Alan, with a mean score of [tex]\bar x _2[/tex] = 165 is 0.28434 ≈ 0.28
Therefore, the correct option is 0.28