Respuesta :
Simplifird form of the given trigonometric expression will be,
[sinx / (1 - cos²x)] × tan(x/2) = 1 /(1 + cosx)
Simplification of a trigonometric expression:
Given expression in the question,
[tex]\frac{\text{sinx}}{1-\text{cos}^2x}\times \text{tan}(\frac{x}{2})[/tex]
= [tex]\frac{\text{sinx}}{\text{sin}^2x}\times \text{tan}(\frac{x}{2} )[/tex]
= [tex]\frac{1}{\text{sin}x}\times \frac{\text{sin}(\frac{x}{2})}{\text{cos}(\frac{x}{2} )}[/tex]
= [tex]\frac{1}{\text{2sin}\frac{x}{2}\text{cos}(\frac{x}{2} ) }\times \frac{\text{sin}(\frac{x}{2})}{\text{cos}(\frac{x}{2} )}[/tex]
= [tex]\frac{1}{\text{2cos}^2{\frac{x}{2} }}[/tex]
Use the identity → ([tex]2\text{cos}^2x=1+\text{cosx}[/tex])
= [tex]\frac{1}{1+\text{cos}x}[/tex]
Hence, [tex]\frac{\text{sinx}}{1-\text{cos}^2x}\times \text{tan}(\frac{x}{2})=\frac{1}{1+\text{cosx}}[/tex] will be the answer.
Learn more to simplify the trigonometric expressions here,
https://brainly.com/question/17043514?referrer=searchResults