SOMEONE PLS HELP!!!
Write a function g whose graph represents a reflection in the y-axis of the graph of f(x)=−3+|x−11|.

Respuesta :

Transformations are used to change the position of a function from one point to another. When f(x) is reflected over the y-axis, the new function g is [tex]g(x) = x + 8[/tex]

Given that:

[tex]f(x) = -3+|x - 11|[/tex]

To reflect across the y-axis, we use the following transformation rule:

[tex](x,y) \to (-x,y)[/tex]

So, the new function is:

[tex]g(x) = f(-x)[/tex]

If [tex]f(x) = -3+|x - 11|[/tex], then:

[tex]f(-x) = -3+|-x - 11|[/tex]

Factor out -1

[tex]f(-x) = -3+|-1(x + 11)|[/tex]

Remove absolute sign

[tex]f(-x) = -3+1 \times (x + 11)[/tex]

[tex]f(-x) = -3+x + 11[/tex]

Collect like terms

[tex]f(-x) = x + 11-3[/tex]

[tex]f(-x) = x + 8[/tex]

Hence, the new function is:

[tex]g(x) = x + 8[/tex]

Read more about transformations at:

https://brainly.com/question/12865301