Respuesta :
Answer:
-4, 3
The answer to the next question is: A (+4/3), B (+2/3), D (+2), E (+4), G (+1/3), H (+1)
Step-by-step explanation:
For edge:)
Rational root theorem is used to determine the potential roots of a function
The potential roots are: [tex]\mathbf{ \pm 1, \pm 2, \pm 4, \pm \frac{1}{3} ,\pm \frac{2}{3}, \frac{4}{3}}[/tex]
The function is given as:
[tex]\mathbf{f(x) = 3x^2 - x - 4}[/tex]
p represents the leading coefficient, while q represents the constant term.
So, we have:
[tex]\mathbf{p = 3}[/tex]
[tex]\mathbf{q = 4}[/tex]
The factors of p and q, are:
[tex]\mathbf{p =\pm 1, \pm 3}[/tex]
[tex]\mathbf{q =\pm 1, \pm 2, \pm 4}[/tex]
So, the potential roots are:
[tex]\mathbf{Roots = \pm\frac{q}{p}}[/tex]
[tex]\mathbf{Roots = \pm\frac{\pm 1, \pm 2, \pm 4}{\pm 1, \pm 3}}[/tex]
So, we have:
[tex]\mathbf{Roots = \pm 1, \pm 2, \pm 4, \pm \frac{1}{3} ,\pm \frac{2}{3}, \frac{4}{3}}[/tex]
Hence, the potential roots are: [tex]\mathbf{ \pm 1, \pm 2, \pm 4, \pm \frac{1}{3} ,\pm \frac{2}{3}, \frac{4}{3}}[/tex]
Read more about rational root theorems at:
https://brainly.com/question/9353378