The size of the angle ∠BDC of the tetrahedron can be determined by
cosine rule.
The size of angle ∠BDC is approximately 71.1°
Reasons:
A tetrahedron is a pyramid with triangular faces.
By Pythagoras's theorem, we have;
[tex]\overline{DC}[/tex]² = [tex]\mathbf{\overline{AD}}[/tex]² + [tex]\mathbf{\overline{AC}}[/tex]²
∴ [tex]\overline{DC}[/tex]² = 8² + 5² = 89
[tex]\overline{DC}[/tex]² = 89
[tex]\overline{BC}[/tex]² = [tex]\overline{AB}[/tex]² + [tex]\overline{AC}[/tex]²
∴ [tex]\overline{BC}[/tex]² = 10² + 8² = 164
[tex]\overline{BC}[/tex]² = 164
[tex]\overline{DB}[/tex]² = [tex]\mathbf{\overline{AD}}[/tex]² + [tex]\mathbf{\overline{AB}}[/tex]²
[tex]\overline{DB}[/tex]² = 5² + 10² = 150
[tex]\overline{DB}[/tex]² = 150
By cosine rule, we have;
[tex]\overline{BC}[/tex]² = [tex]\overline{DB}[/tex]² + [tex]\overline{DC}[/tex]² - 2 × [tex]\mathbf{\overline{DB}}[/tex] × [tex]\mathbf{\overline{DC}}[/tex] × cos(∠BDC)
Therefore;
164 = 150 + 89 - 2 × √(150) × √(89) × cos(∠BDC)
2 × √(150) × √(89) × cos(∠BDC) = 150 + 89 - 164 = 75
[tex]cos( \angle BDC) = \mathbf{\dfrac{75}{2 \times \sqrt{150} \times \sqrt{89} }}[/tex]
[tex]\angle BDC = arccos \left(\dfrac{75}{2 \times \sqrt{150} \times \sqrt{89} } \right) \approx \mathbf{71.1 ^{\circ}}[/tex]
∠BDC ≈ 71.1°
Learn more here:
https://brainly.com/question/20839703