The diagram shows a tetrahedron.

AD is perpendicular to both AB and AC.

AB = 10 cm.

AC = 8 cm.

AD = 5 cm.

Angle BAC = 90°

Calculate the size of angle BDC.

Give your answer correct to 1 decimal place.​

The diagram shows a tetrahedronAD is perpendicular to both AB and ACAB 10 cmAC 8 cmAD 5 cmAngle BAC 90Calculate the size of angle BDCGive your answer correct to class=

Respuesta :

Answer: Angle BDC = 76.3 degrees

=================================================

Work Shown:

For now focus on triangle ABC. Since this is a right triangle, we can use the pythagorean theorem to find the hypotenuse BC.

a^2 + b^2 = c^2

(AC)^2 + (AB)^2 = (BC)^2

8^2 + 10^2 = (BC)^2

(BC)^2 = 164

BC = sqrt(164)

BC = 12.806248 approximately

-------------

Move onto triangle ABD. Find the missing side BD through the pythagorean theorem

a^2 + b^2 = c^2

(AD)^2 + (AB)^2 = (BD)^2

5^2 + 10^2 = (BD)^2

125 = (BD)^2

(BD)^2 = 125

BD = sqrt(125)

BD = 11.1803399 which is approximate

---------------

Move onto triangle ADC. We'll use the pythagorean theorem again

a^2 + b^2 = c^2

(AC)^2 + (AD)^2 = (CD)^2

8^2 + 5^2 = (CD)^2

89 = (CD)^2

(CD)^2 = 89

CD = sqrt(89)

CD = 9.433981 also approximate

---------------

Focus on triangle BCD. We have the following side lengths

  • BC = 12.806248
  • BD = 11.1803399
  • CD = 9.433981

Let

  • side d be opposite angle D, so d = BC = 12.806248
  • side b be opposite angle B, so b = CD = 9.433981
  • side c be opposite angle C, so c = BD = 11.1803399

Note the use of uppercase letters for angles and lowercase letters for side lengths.

We can then use the law of cosines to find the angle we're after

d^2 = b^2 + c^2 - 2*b*c*cos(D)

12.806248^2=9.433981^2+11.1803399^2-2*9.433981*11.1803399*cos(D)

163.999987837504=213.999997787893-210.950228380284*cos(D)

-210.950228380284*cos(D) = -50.000009950389

cos(D) = (-50.000009950389)/(-210.950228380284)

cos(D) = 0.237022781792173

cos(D) = arccos(0.237022781792173)

D = 76.2891111084541

D = 76.3

The size of the angle ∠BDC of the tetrahedron can be determined by

cosine rule.

The size of angle ∠BDC is approximately 71.1°

Reasons:

A tetrahedron is a pyramid with triangular faces.

By Pythagoras's theorem, we have;

[tex]\overline{DC}[/tex]² = [tex]\mathbf{\overline{AD}}[/tex]² + [tex]\mathbf{\overline{AC}}[/tex]²

∴ [tex]\overline{DC}[/tex]² = 8² + 5² = 89

[tex]\overline{DC}[/tex]² = 89

[tex]\overline{BC}[/tex]² = [tex]\overline{AB}[/tex]² + [tex]\overline{AC}[/tex]²

∴ [tex]\overline{BC}[/tex]² = 10² + 8² = 164

[tex]\overline{BC}[/tex]² = 164

[tex]\overline{DB}[/tex]² = [tex]\mathbf{\overline{AD}}[/tex]² + [tex]\mathbf{\overline{AB}}[/tex]²

[tex]\overline{DB}[/tex]² = 5² + 10² = 150

[tex]\overline{DB}[/tex]² = 150

By cosine rule, we have;

[tex]\overline{BC}[/tex]² = [tex]\overline{DB}[/tex]² + [tex]\overline{DC}[/tex]² - 2 ×  [tex]\mathbf{\overline{DB}}[/tex] × [tex]\mathbf{\overline{DC}}[/tex] × cos(∠BDC)

Therefore;

164 = 150 + 89 - 2 × √(150) × √(89) × cos(∠BDC)

2 × √(150) × √(89) × cos(∠BDC) = 150 + 89 - 164 = 75

[tex]cos( \angle BDC) = \mathbf{\dfrac{75}{2 \times \sqrt{150} \times \sqrt{89} }}[/tex]

[tex]\angle BDC = arccos \left(\dfrac{75}{2 \times \sqrt{150} \times \sqrt{89} } \right) \approx \mathbf{71.1 ^{\circ}}[/tex]

∠BDC ≈ 71.1°

Learn more here:

https://brainly.com/question/20839703