Evaluate the double integral ∬Ry2x2+y2dA, where R is the region that lies between the circles x2+y2=16 and x2+y2=121, by changing to polar coordinates.

Respuesta :

Answer:

See answer and graph below

Step-by-step explanation:

∬Ry2x2+y2dA

=∫Ry.2x.2+y.2dA

=A(2y+4Ryx)+c

=∫Ry.2x.2+y.2dA

Integral of a constant ∫pdx=px

=(2x+2.2Ryx)A

=A(2y+4Ryx)

=A(2y+4Ryx)+c

The graph of y=A(2y+4Ryx)+c assuming A=1 and c=2

Ver imagen emmanuelaniala

The evaluation of the double integral is [tex]\mathbf{ \dfrac{105}{2}\pi }[/tex]

The double integral [tex]\mathbf{\int \int _R\ \dfrac{y^2}{x^2+y^2} \ dA}[/tex], where R is the region that lies between

the circles [tex]\mathbf{x^2 +y^2 = 16 \ and \ x^2 + y^2 = 121}[/tex].

Let consider x = rcosθ and y = rsinθ because x² + y² = r²;

Now, the double integral can be written in polar coordinates as:

[tex]\mathbf{\implies \int \int _R\ \dfrac{y^2}{x^2+y^2} \ dxdy}[/tex]

[tex]\mathbf{\implies \int \int _R\ \dfrac{r^2 \ sin^2 \theta}{r^2} \ rdrd\theta}[/tex]

[tex]\mathbf{\implies \int \int _R\ \ sin^2 \theta \ r \ drd\theta}[/tex]

Thus, the integral becomes:

[tex]\mathbf{=\int^{2 \pi}_{0} sin^2 \theta d\theta \int ^{11}_{4} rdr }[/tex]

  • since 2sin² = 1 - cos2θ

[tex]\mathbf{=\int^{2 \pi}_{0} \dfrac{1-cos 2 \theta }{2} \ \theta \ d\theta\dfrac{r}{2} \Big|^{11}_{4}dr }[/tex]  

[tex]\mathbf{\implies \dfrac{1}{2} \Big[\theta - \dfrac{sin \ 2 \theta}{2}\Big]^{2 \pi}_{0} \ \times\Big[ \dfrac{11^2-4^2}{2}\Big]}[/tex]

[tex]\mathbf{\implies \dfrac{\pi}{2} \times\Big[ 121-16\Big]}[/tex]

[tex]\mathbf{\implies \dfrac{105}{2}\pi }[/tex]

Learn more about double integral here:

https://brainly.com/question/19756166