Respuesta :

Answer:

E = 2.48 eV

Explanation:

The energy of a photon is given by the following formula:

E = hυ

where,

E = Energy of Photon = ?

h = Plank's Constant = 6.626 x 10⁻³⁴ J.s

υ = frequency of photon = c/λ

Therefore,

E = hc/λ

where,

c = speed of light = 3 x 10⁸ m/s

λ = wavelength of light = 500 nm = 5 x 10⁻⁷ m

Therefore,

E = (6.626 x 10⁻³⁴ J.s)(3 x 10⁸ m/s)/(5 x 10⁻⁷ m)

E = (3.97 x 10⁻¹⁹ J)(1 eV/1.6 x 10⁻¹⁹ J)

E = 2.48 eV

A photon of visible light that has a wavelength of 500 nm, has an energy of 2.48 eV.

We can calculate the energy (E) of a photon with a wavelength (λ) of 500 nm using the Planck's-Einstein relation.

[tex]E = \frac{h \times c}{\lambda } = \frac{(6.63 \times 10^{-34}J.s ) \times (3.00 \times 10^{8}m/s )}{500 \times 10^{-9}m } = 3.98 \times 10^{-19} J[/tex]

where,

  • h: Planck's constant
  • c: speed of light

We can convert 3.98 × 10⁻¹⁹ J to eV using the conversion factor 1 J = 6.24 × 10¹⁸ eV.

[tex]3.98 \times 10^{-19} J \times \frac{6.24 \times 10^{18} eV }{1J} = 2.48 eV[/tex]

A photon of visible light that has a wavelength of 500 nm, has an energy of 2.48 eV.

Learn more: https://brainly.com/question/2058557