14 of 46
E Sa
Function Transformations: Tutorial
Part B
Open the graphing tool, and compare the functions using the sliders. What can be said about the domain of
y= VX - kand the domain of y = VX + k?

14 of 46 E Sa Function Transformations Tutorial Part B Open the graphing tool and compare the functions using the sliders What can be said about the domain of y class=

Respuesta :

Answer:

Therefore, domain of y = [tex]\sqrt{x-k}[/tex] ; Domain = [k, ∞)

Domain of y = [tex]\sqrt{x}+k[/tex] ; Domain = [0, ∞)

Step-by-step explanation:

Two functions are,

y = [tex]\sqrt{x-k}[/tex]

and y = [tex]\sqrt{x}-k[/tex]

Let the value of k = 1

Then we find the graph of the functions attached.

By analyzing these graphs,

y = [tex]\sqrt{x-1}[/tex] when shifted 1 unit right and 1 unit down we get a new function,

y = [tex]\sqrt{x}+1[/tex]

Therefore, domain of y = [tex]\sqrt{x-1}[/tex] ; Domain = [1, ∞)

Domain of y = [tex]\sqrt{x}+1[/tex] ; Domain = [0, ∞)

Similarly, domain of y =  [tex]\sqrt{x-k}[/tex] ; Domain = [k, ∞)

And domain of y = √x + k ; Domain = [0, ∞)

Ver imagen eudora