Answer:
The vertical asymptote for the reciprocal of y=8x-4 is [tex]\frac{1}{2}[/tex]
Step-by-step explanation:
Given Equation : [tex]y = 8x-4[/tex]
Reciprocal of given equation =[tex]\frac{1}{y}=\frac{1}{8x-4}[/tex]
Now to find the vertical asymptote
[tex]\frac{1}{y}=\frac{1}{8x-4}[/tex]
Equate denominator to 0
8x-4=0
8x=4
[tex]x=\frac{4}{8}[/tex]
[tex]x=\frac{1}{2}[/tex]
So, The vertical asymptote is[tex]\frac{1}{2}[/tex]
Hence the vertical asymptote for the reciprocal of y=8x-4 is [tex]\frac{1}{2}[/tex]