The number of possible permutations of 8 objects taken 3 at a time is 336.
The formula to calculate the permutation of 'n' object taken 'r' at a time is [tex]P_{r}=\dfrac{n!}{(n-1)!}[/tex].
The formula for calculating the permutation is [tex]P_{r}=\dfrac{n!}{(n-r)!}[/tex] where 'n' is the number of distinct objects taken 'r' at a time.
Thus we will substitute n=8 and r=3, we will get
[tex]P_{3}=\dfrac{8!}{(8-3)!}\\P_{3}=\dfrac{8\times 7\times 6\times 5\times 4\times 3\times 2\times 1}{5!}\\P_{3}=\dfrac{8\times 7\times 6\times 5\times 4\times 3\times 2\times 1}{5\times 4\times 3\times 2\times 1}\\P_{3}=8\times 7\times 6\\P_{3}=336[/tex]
So, the number of possible permutations of 8 objects taken 3 at a time is 336.
Learn more about Permutation here-https://brainly.com/question/1216161
#SPJ2