What is the length of the unknown leg in the right triangle?

A right triangle has a side with length StartRoot 23 EndRoot yards and hypotenuse with length StartRoot 87 EndRoot yards

Respuesta :

Answer:

8

Step-by-step explanation:

A right angled triangle is made of three sides with the longest side being the hypotenuse. According to pythagoras theorem;

[tex]hyp^{2} = adj^{2}+opp^{2}[/tex]

Given hypotenuse = [tex]\sqrt{87}[/tex] and another side = [tex]\sqrt{23}[/tex], the third side can be gotten according to the formula above. On substituting;

[tex](\sqrt{87} )^{2} = (\sqrt{23} )^{2} + x ^{2} \\x^{2} = (\sqrt{87} )^{2} - (\sqrt{23} )^{2}\\x^{2} = 87-23\\x^{2} = 64\\x =\sqrt{64}\\ x = 8[/tex]

The length of the unknown leg in the right triangle is 8

Answer:

a. 8 yd

Step-by-step explanation:

Hypotenuse = [tex]\sqrt{87}[/tex]

Length = [tex]\sqrt{23}[/tex]

x² + ([tex]\sqrt{23}[/tex])² = ([tex]\sqrt{87}[/tex])²

x² = ([tex]\sqrt{87}[/tex])² - ([tex]\sqrt{23}[/tex])²

x² = 87 - 23

x² = 64

[tex]\sqrt{x}[/tex]² = [tex]\sqrt{64}[/tex]

x = 8 yd