Math question

Shannon and Kristoph are dividing numbers written in scientific notation.

Shannon’s expression: 4.2 x 10^9 /1.4 x 10^4


Kristoph’s expression: 4.2 x 10^2 /1.4 x 10^-3



C) What is the value of their expressions written in standard form?

Thanks

Respuesta :

Answer:

- Shannon's expression in scientific notation is [tex]3.0 * 10^5[/tex]

- Kristoph's expression in scientific notation is [tex]3.0 * 10^5[/tex]

Step-by-step explanation:

Given

Shannon’s expression: [tex]4.2 * 10^9 /1.4 * 10^4[/tex]

Kristoph’s expression: [tex]4.2 * 10^2 /1.4 * 10^{-3}[/tex]

Required

What is the value of their expressions written in standard form

First, we solve Shannon's expression:

[tex]4.2 * 10^9 /1.4 * 10^4[/tex]

Writing the expression properly

[tex]\frac{4.2 * 10^9}{1.4 * 10^4}[/tex]

Split into two

[tex]\frac{4.2}{1.4} * \frac{10^9}{10^4}[/tex]

[tex]3.0 * \frac{10^9}{10^4}[/tex]

From laws of indices [tex]\frac{a^m}{a^n} = a^{m-n}[/tex]

Applying the above law, we have

[tex]3.0 * 10^{9-4}[/tex]

[tex]3.0 * 10^5[/tex]

Hence, Shannon's expression in scientific notation is [tex]3.0 * 10^5[/tex]

Applying the same steps on Kristoph's expression; we have

[tex]4.2 * 10^2 /1.4 * 10^{-3}[/tex]

Writing the expression properly

[tex]\frac{4.2 * 10^2}{1.4 * 10^{-3}}[/tex]

Split into two

[tex]\frac{4.2}{1.4} * \frac{10^2}{10^{-3}}[/tex]

[tex]3.0 * \frac{10^2}{10^{-3}}[/tex]

From laws of indices [tex]\frac{a^m}{a^n} = a^{m-n}[/tex]

Applying the above law, we have

[tex]3.0 * 10^{2-(-3)}[/tex]

[tex]3.0 * 10^{2+3}[/tex]

[tex]3.0 * 10^5[/tex]

Hence, Kristoph's expression in scientific notation is [tex]3.0 * 10^5[/tex]