Respuesta :

Answer:

[tex]||3u-2v||=39.4588[/tex]

Step-by-step explanation:

Vector u can also be written with initial point at the origin as:

[tex]u=(9-17,-12-5)\\u=(-8,-17)[/tex]

and vector v  in a similar way can be written as:

[tex]v=(3-12,-2-4)\\v=(-9,-6)[/tex]

then the new vector created via the operations: 3u -2v, can be expressed as:

[tex]3u-2v=3\,(-8,-17)-2\,(-9,-6)\\3u-2v=(-6,-39)[/tex]

Now the norm of this vector can be found using the Pythagorean identity:

[tex]||3u-2v||=||(-6,-39||=\sqrt{(-6)^2+(-39)^2} =39.4588[/tex]

Answer:

C. 39.46 units

Explanation:

I got it correct in my test :)

Ver imagen websitetechie