Respuesta :

hkh91

Answer:

LHS = RHS

Step-by-step explanation:

[tex] \sec(x) - \cos(x) \\ = \frac{1}{ \cos(x) } - \cos(x) \\ = \frac{1 - { \cos(x) }^{2} }{ \cos(x) } [/tex]

Since

[tex] { \sin(x) }^{2} + { \cos(x) }^{2} = 1 \\ 1 - { \cos(x) }^{2} = { \sin(x) }^{2} [/tex]

Therefore,

[tex] \frac{1 - \ { \cos(x) }^{2} }{ \cos(x) } \\ = \frac{ { \sin(x) }^{2} }{ \cos(x) } \\ = \frac{ \sin(x ) \times \sin(x) }{ \cos(x) } \\ = \sin(x) \tan(x) [/tex]

Therefore LHS = RHS