A positive point charge (q 7.2 108 C) is surrounded by an equipotential surface A, which has a radius of rA 1.8 m. A positive test charge (q0 4.5 1011 C) moves from surface A to another equipotential surface B, which has a radius rB. The work done as the test charge moves from surface A to surface B is WAB8.1 109 J. Find rB.

Respuesta :

Thus the radius [tex]r_{B}[/tex] is 1.2 m

Explanation:

The potential at point A due to point charge at center .

V₁ = [tex]\frac{q}{4\pi\epsilon_0r_A }[/tex] =  7.2 x 10⁻⁸ x 9 x 10⁹ [[tex]\frac{1}{r_A}[/tex]]

Similarly

The potential at B

V₂ = [tex]\frac{q}{4\pi\epsilon_0r_B }[/tex] = 7.2 x 10⁻⁸ x 9 x 10⁹ [ [tex]\frac{1}{r_B}[/tex] ]

The potential difference

V = V₂ - V₁ = 648  [ [tex]\frac{1}{r_B}[/tex] - [tex]\frac{1}{r_A}[/tex] ]

The work done

W = q₀ V = 4.5 x 10⁻¹¹ x 648 [[tex]\frac{1}{r_B}[/tex] - [tex]\frac{1}{r_A}[/tex] ]

But W = 8.1 x 10⁻⁹ J

Thus equation is

8.1 x 10⁻⁹ = 4.5 x 10⁻¹¹ x 648 [[tex]\frac{1}{r_B}[/tex] - [tex]\frac{1}{r_A}[/tex] ]

0.28 = [ [tex]\frac{1}{r_B}[/tex] - [tex]\frac{1}{1.8}[/tex] ]  or  [tex]\frac{1}{r_B}[/tex] = 0.28 + 0.55 = 0.83

or [tex]r_{B}[/tex] =  1.2 m

The radius [tex]r_{B}[/tex] is 1.2 m.

Equipotential surface :

The potential difference between points A and B is given as,

                 [tex]V=V_{B}-V_{A}=kq(\frac{1}{r_{B}}-\frac{1}{r_{A}} )[/tex]

Where k is coulombs constant, value of  [tex]k=9*10^{9} Nm^{2}/C[/tex]

  • Substitute values in above equation.

        [tex]V=9*10^{9} *7.2*10^{-8}(\frac{1}{r_{B}}-\frac{1}{1.8} )\\ \\V=648*(\frac{1}{r_{B}}-\frac{1}{1.8} )[/tex]

  • Work done is given as,

       [tex]W=q_{0}*V[/tex]

The work done as the test charge moves from surface A to surface B   is[tex]8.1*10^{-9}J[/tex].

     [tex]2.92*10^{-8} (\frac{1}{r_{B}}-\frac{1}{1.8} )=8.1*10^{-9} \\\\ (\frac{1}{r_{B}}-\frac{1}{1.8} )=0.277\\\\\frac{1}{r_{B}} =0.277+\frac{1}{1.8}=0.832\\ \\r_{B}=1/0.832=1.2m[/tex]

Find out more information about the equipotential surface here:

https://brainly.com/question/12074544