The man (75 Kg) is climbing up the rope with acceleration 0.25 m/s2 relative to the rope. MA = 80 Kg. What is the rope tension and aA? Ans: aA = 0.195 m/s2 down, T = 769 N

Respuesta :

Answer:

a = 0.195 m/s²

T = 769.2 N

Explanation:

The sum of the forces (ΣF) acting on the man climbing up the rope is:

[tex] \sum F_{y} = m_{m}a_{m} [/tex]

[tex]T - m_{m}g = ma_{m}[/tex]        

where [tex]m_{m}[/tex]: is the mass of the man, [tex]a_{m}[/tex]: is the acceleration of the man, T: is the tension and g: is the gravitational constant                                

[tex]T - (75 kg)(9.81 m/s^{2}) = (75 kg)a_{m}[/tex]        (1)                                              

Since the acceleration of the man is relative to the rope, the acceleration of the man is:

[tex] a_{r} = a_{m} - a [/tex]

[tex] a_{m} = a_{r} + a [/tex]          (2)

where [tex]a_{r}[/tex]: is the acceleration of the man relative to the rope and a: is the acceleration of the rope = acceleration of the block A

By introducing equation (2) into (1) we have:

[tex]T - (75 kg)(9.81 m/s^{2}) = (75 kg)(0.25 m/s^{2} + a)[/tex]   (3)

             

The sum of the forces acting on the block A is:

[tex] \sum F_{y} = ma [/tex]    

[tex] m_{b}g - T = ma [/tex]        

where [tex]m_{b}[/tex]: is the mass of the block A

[tex] (80 kg)(9.81 m/s^{2}) - T = (80 kg)a [/tex]            (4)    

Now, solving equations (3) and (4) for a and T, we have:

[tex] a = \frac{g(m_{b} - m_{m}) - (0.25)(m_{m})}{m_{b} + m_{m}} [/tex]                                                                                    

[tex] a = \frac{9.81 m/s^{2}( 80 kg- 75 kg) - (0.25 m/s^{2})(75 kg)}{80 kg + 75 kg} = 0.195 m/s^{2} [/tex]

[tex] T = m_{b}g - m_{b}a = (80 kg)(9.81 m/s^{2}) - (80 kg)(0.195 m/s^{2}) = 769.2 N [/tex]

I hope it helps you!