Respuesta :

Option C:

x = 90°

Solution:

Given equation:

[tex]\sin x=1+\cos ^{2} x[/tex]

To find the degree:

[tex]\sin x=1+\cos ^{2} x[/tex]

Subtract 1 + cos²x from both sides.

[tex]\sin x-1-\cos ^{2} x=0[/tex]

Using the trigonometric identity:[tex]\cos ^{2}(x)=1-\sin ^{2}(x)[/tex]

[tex]\sin x-1-\left(1-\sin ^{2}x\right)=0[/tex]

[tex]\sin x-1-1+\sin ^{2}x=0[/tex]

[tex]\sin x-2+\sin ^{2}x=0[/tex]

[tex]\sin ^{2}x+\sin x-2=0[/tex]

Let sin x = u

[tex]u^2+u-2=0[/tex]

Factor the quadratic equation.

[tex](u+2)(u-1)=0[/tex]

u + 2 = 0,  u – 1 = 0

u = –2, u = 1

That is sin x = –2, sin x = 1

sin x can't be smaller than –1 for real solutions. So ignore sin x = –2.

sin x = 1

The value of sin is 1 for 90°.

x = 90°.

Option C is the correct answer.

Answer:

C

Step-by-step explanation:

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

CC

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

CC

C

C

C

C

C

C

C

C

C

C

C

C