Respuesta :

[tex]$\frac{dy}{dt}=-40[/tex]

Solution:

Given data:

[tex]y=-2 x^{2}-5[/tex] and [tex]\frac{dx}{dt}=-5[/tex]

To find [tex]\frac{dy}{dt}[/tex]:

[tex]y=-2 x^{2}-5[/tex]

Differentiate y with respect to t.

[tex]$\frac{dy}{dt}=\frac{d}{dt}(-2x^2-5)[/tex]

[tex]$\frac{dy}{dt}=\frac{d}{dt}(-2x^2)-\frac{d}{dt}(5)[/tex]

Apply the differentiation rule: [tex]\frac{d}{d x}\left(x^{n}\right)=n \cdot x^{n-1}[/tex]

[tex]$\frac{dy}{dt}=2(-2x^{2-1})\cdot \frac{dx}{dt} -\frac{d}{dt}(5)[/tex]

[tex]$\frac{dy}{dt}=-4x\cdot \frac{dx}{dt} -\frac{d}{dt}(5)[/tex]

Apply the differentiation rule: [tex]\frac{d}{dt}a=0[/tex]

[tex]$\frac{dy}{dt}=-4x\cdot \frac{dx}{dt} -0[/tex]

[tex]$\frac{dy}{dt}=-4x\cdot \frac{dx}{dt}[/tex]

At x = –2 and [tex]\frac{dx}{dt}=-5[/tex]

[tex]$\frac{dy}{dt}=-4(-2)\cdot (-5)[/tex]

[tex]$\frac{dy}{dt}=-40[/tex]

Therefore, [tex]\frac{dy}{dt}=-40[/tex].