Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used. For each description of a graph, identify the sine function with those parameters.
p(x) = 8sin(pi x +4) +2
r(x) = sin(4x +8) +2
f(x) = 4sin((1/pi)x -2) +8
q(x) = 4sin(2x - pi) + 8
h(x) = 8sin(pi x - 2) + 4
g(x) = 2sin(8x + pi) +1

Amplitude: 2
Period: 1/8
Midline: y = 1
Amplitude: 4
Period: 1/2
Midline: y = 8
Amplitude: 8
Period: 1/pi
Midline: y = 4
Amplitude: 1
Period: (this wouldnt load on the site so idk what it is)
Midline: y = 2

Respuesta :

Answer:

Match list below

Step-by-step explanation:

The Sine Function

The general expression for the sine function is

[tex]f(x)=A.sin(w.x+z)+M[/tex]

Where:

A=Amplitude

w=angular frequency

x = variable

z = phase shift

M = Midline or vertical shift

The angular frequency can be expressed as a function of the period T

[tex]\displaystyle w=\frac{2\pi}{T}[/tex]

Solving for T

[tex]\displaystyle T=\frac{2\pi}{w}[/tex]

Now, let's analyze each description and find its sine function

Amplitude: 2

The only function that has amplitude 2 (the coefficient of the sine) is

g(x) = 2sin(8x + pi) +1

Period: 1/8

Let's compute w

[tex]\displaystyle w=\frac{2\pi}{\frac{1}{8} }=16\pi[/tex]

We find no function with such an angular frequency

Midline: y = 1

There is only one function with M=1 as compared to the general function

g(x) = 2sin(8x + pi) +1

Amplitude: 4

We find two functions:

f(x) = 4sin((1/pi)x -2) +8

q(x) = 4sin(2x - pi) + 8

Period: 1/2

[tex]\displaystyle w=\frac{2\pi}{\frac{1}{2} }=4\pi[/tex]

No function can be found with that value of w

Midline: y = 8

Two functions have such a midline

f(x) = 4sin((1/pi)x -2) +8

q(x) = 4sin(2x - pi) + 8

Amplitude: 8

We can find two functions like that

p(x) = 8sin(pi x +4) +2

h(x) = 8sin(pi x - 2) + 4

Period: 1/pi

[tex]\displaystyle w=\frac{2\pi}{\frac{1}{\pi} }=2\pi^2[/tex]

No function complies with that condition

Midline: y = 4

h(x) = 8sin(pi x - 2) + 4

is the only one to have midline y=4

Amplitude: 1

r(x) = sin(4x +8) +2

Midline: y = 2

p(x) = 8sin(pi x +4) +2

r(x) = sin(4x +8) +2

Answer:

amplitude:8

period:2

midline:4

h(x)=8sin(pix-2)+4

amplitude:4

period: pi

midline:8

q(x)=4sin(2x-pi)+8

amplitude:1

period:pi/2

midline:2

r(x)sin(4x+8)+2

amplitude:2

period:pi/4

midline:1

g(x)=2sin(8x+x)+1

Step-by-step explanation:

PLATO/Edmentum