Answer:
a) [tex] s'(t) = v(t) = 38 t -10 [/tex]
b) [tex] s'(t) = v(t) = 38 t -10 [/tex]
We just need to replace the different values of t and see what we got:
t=0, [tex] v(0) = 38*0 -10 = -10[/tex]
t =5, [tex] v(5) = 38*5 -10 =180[/tex]
t=8, [tex] v(8)= 38*8 -10 = 294[/tex]
Step-by-step explanation:
Assuming this complete question: "If a function s (t )gives the position of a function at time t, the derivative gives the velocity, that is, v (t)=s'(t ). For the given position function, find (a) v(t) and (b) the velocity when t=0, t=5, and t=8.
"
[tex] s(t) = 19t^2 -10 t + 5[/tex]
Part a
The velocity is defined as [tex] v(t) =s'(t)[/tex]
And if we derivate the position we got:
[tex] s'(t) = v(t) = 38 t -10 [/tex]
Part b
Since we have the function for the velocity:
[tex] s'(t) = v(t) = 38 t -10 [/tex]
We just need to replace the different values of t and see what we got:
t=0, [tex] v(0) = 38*0 -10 = -10[/tex]
t =5, [tex] v(5) = 38*5 -10 =180[/tex]
t=8, [tex] v(8)= 38*8 -10 = 294[/tex]