Respuesta :

Option A: [tex]\frac{3}{12} \times \frac{3}{6}[/tex]

Option C: [tex]\frac{1}{4} \times \frac{1}{2}[/tex]

Solution:

To find the area of the shaded region:

Number of squares in one row = 12

Number of squares in one column = 6

Note that:

Number of squares shaded in one row = 3

Number of squares shaded in one column = 3

Option A: [tex]\frac{3}{12} \times \frac{3}{6}[/tex]

Area of the shaded region   [tex]$=\frac{\text {Number of squares shaded in row}}{\text { Total square in row }} \times \frac{\text { Number of squares shaded in column}}{\text { Total square in row }}[/tex][tex]=\frac{3}{12} \times \frac{3}{6}[/tex]

Hence it is true.

Option B: [tex]\frac{3}{10} \times \frac{1}{2}[/tex]

Already proved in option A.

Hence it is not true.

Option C: [tex]\frac{1}{4} \times \frac{1}{2}[/tex]

By option A,

Area of the shaded region = [tex]\frac{3}{12} \times \frac{3}{6}[/tex]

Divide the numerator and denominator by the common factor.

                                            [tex]=\frac{3\div3}{12\div3} \times \frac{3\div3}{6\div3}[/tex]

                                            [tex]=\frac{1}{4} \times \frac{1}{2}[/tex]

Hence it is true.

Option D: [tex]\frac{1}{4} \times \frac{1}{3}[/tex]

Already proved in option C.

Hence it is not true.

Option E: [tex]\frac{4}{12} \times \frac{3}{6}[/tex]

Here, the number of squares shaded in row indicated as 4.

But the shaded squares in row wise is 3.

Hence it is not true.

Therefore Option A and Option C are true.

[tex]\frac{3}{12} \times \frac{3}{6}[/tex]   and  [tex]\frac{1}{4} \times \frac{1}{2}[/tex] are true.