Answer:
[tex]k_2=2.55\ {Ms}^{-1}[/tex]
Explanation:
Using the expression,
[tex]\ln \dfrac{k_{1}}{k_{2}} =-\dfrac{E_{a}}{R} \left (\dfrac{1}{T_1}-\dfrac{1}{T_2} \right )[/tex]
Where,
[tex]k_1\ is\ the\ rate\ constant\ at\ T_1[/tex]
[tex]k_2\ is\ the\ rate\ constant\ at\ T_2[/tex]
[tex]E_a[/tex] is the activation energy
R is Gas constant having value = 8.314 J / K mol
[tex]k_2=?[/tex]
[tex]k_1=2.57\ {Ms}^{-1}[/tex]
[tex]T_1=701\ K[/tex]
[tex]T_2=525\ K[/tex]
[tex]E_a=1.5\times 10^2\ kJ/mol[/tex]
So,
[tex]\ln \:\frac{2.57}{k_2}\:=-\frac{1.5\times \:10^2}{8.314}\times \left(\frac{1}{701}-\frac{1}{525}\right)\:\:[/tex]
[tex]k_2=\frac{2.57}{e^{\frac{352}{40796.798}}}=2.55\ {Ms}^{-1}[/tex]