Answer:
t = 60.3 minutes.
Step-by-step explanation:
The function [tex]f(t) = Ce^{-kt} +77[/tex] ........ (1)
Now, at t = 0, f(0) = 150 = C + 77
⇒ C = 73
So, the function (1) becomes [tex]f(t) = 73e^{-kt} +77[/tex] ......... (2)
Now, it is given that at t = 10 minutes, f(10) = 120 degree.
Therefore, from equation (2), [tex]120 = 73e^{-10k} +77[/tex]
⇒ [tex]73e^{-10k} = 43[/tex]
⇒ [tex]e^{-10k} = 0.589[/tex]
Now, taking ln both sides we get -10k (ln e) =ln (0.589)
⇒ k = 0.0529
Therefore, the equation (2) becomes [tex]f(t) = 73e^{-0.0529t} +77[/tex] ......(3)
Now, putting f(t) = 80 degree, we have fro equation (3),
[tex]80 = 73e^{-0.0529t} +77[/tex]
⇒ [tex]3 = 73e^{-0.0529t}[/tex]
⇒ [tex]e^{-0.0529t} = 0.041[/tex]
Taking ln both sides we get, -0.0529t = - 3.19, ⇒ t = 60.3 minutes. (Answer)