Respuesta :
Answers:
1) 2951.39 m
2) 0.000952 m
3) [tex]8.765(10)^{16}kg[/tex]
Explanation:
1) We know the Schwarzschild radius [tex]RBH[/tex] is given by the following equation:
[tex]RBH=\frac{2GM}{c^{2}}[/tex] (1)
Where:
[tex]G=6.674(10)^{-11}\frac{m^{3}}{kgs^{2}}[/tex] is the Universal Gravitational Constant
[tex]M[/tex] the mass of the black hole
[tex]c=3(10)^{8}m/s[/tex] is the speed of light
Now, if we have a black hole with the mass of the Sun ([tex]M_{Sun}=1.99(10)^{30}kg[/tex]), its radius will be:
[tex]RBH_{Sun}=\frac{2GM_{Sun}}{c^{2}}[/tex] (2)
[tex]RBH_{Sun}=\frac{2(6.674(10)^{-11}\frac{m^{3}}{kgs^{2}})(1.99(10)^{30}kg)}{{(3(10)^{8}m/s)}^{2}}[/tex] (3)
[tex]RBH_{Sun}=2951.39m[/tex] (4) This is the radius of the black hole with the mass of the Sun
2) On the other hand, if the black hole has the mass of Mars ([tex]M_{Mars}=6.42(10)^{23}kg[/tex]), its radius will be:
[tex]RBH_{Mars}=\frac{2GM_{Mars}}{c^{2}}[/tex] (5)
[tex]RBH_{Mars}=\frac{2(6.674(10)^{-11}\frac{m^{3}}{kgs^{2}})(6.42(10)^{23}kg)}{{(3(10)^{8}m/s)}^{2}}[/tex] (6)
[tex]RBH_{Mars}=0.000952m[/tex] (7) This is the radius of the black hole with the mass of Mars
3) In this case, we have to isolate [tex]M[/tex] from (1):
[tex]M=\frac{RBH c^{2}}{2G}[/tex] (8)
Where [tex]RBH=1.30(10)^{-10}m[/tex]
Solving (8) with the known values:
[tex]M=\frac{(1.30(10)^{-10}m)(3(10)^{8}m/s)^{2}}{2(6.674(10)^{-11}m^{3}/kgs^{2}}[/tex] (9)
[tex]M=8.765(10)^{16}kg[/tex] (10) This is the mass of the black hole