Respuesta :

Answer:  The required solution of the given IVP is

[tex]y(x)=\dfrac{3}{4}e^x+\dfrac{5}{4}e^{-x}.[/tex]

Step-by-step explanation:  We are given to find the solution of the following initial value problem :

[tex]y^{\prime\prime}-y=0,~~~y(0)=2,~~y^\prime(0)=-\dfrac{1}{2}.[/tex]

Let [tex]y=e^{mx}[/tex] be an auxiliary solution of the given differential equation.

Then, we have

[tex]y^\prime=me^{mx},~~~~~y^{\prime\prime}=m^2e^{mx}.[/tex]

Substituting these values in the given differential equation, we have

[tex]m^2e^{mx}-e^{mx}=0\\\\\Rightarrow (m^2-1)e^{mx}=0\\\\\Rightarrow m^2-1=0~~~~~~~~~~~~~~~~~~~~~~~~~~[\textup{since }e^{mx}\neq0]\\\\\Rightarrow m^2=1\\\\\Rightarrow m=\pm1.[/tex]

So, the general solution of the given equation is

[tex]y(x)=Ae^x+Be^{-x},[/tex] where A and B are constants.

This gives, after differentiating with respect to x that

[tex]y^\prime(x)=Ae^x-Be^{-x}.[/tex]

The given conditions implies that

[tex]y(0)=2\\\\\Rightarrow A+B=2~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)[/tex]

and

[tex]y^\prime(0)=-\dfrac{1}{2}\\\\\\\Rightarrow A-B=-\dfrac{1}{2}~~~~~~~~~~~~~~~~~~~~~~~~(ii)[/tex]

Adding equations (i) and (ii), we get

[tex]2A=2-\dfrac{1}{2}\\\\\\\Rightarrow 2A=\dfrac{3}{2}\\\\\\\Rightarrow A=\dfrac{3}{4}.[/tex]

From equation (i), we get

[tex]\dfrac{3}{4}+B=2\\\\\\\Rightarrow B=2-\dfrac{3}{4}\\\\\\\Rightarrow B=\dfrac{5}{4}.[/tex]

Substituting the values of A and B in the general solution, we get

[tex]y(x)=\dfrac{3}{4}e^x+\dfrac{5}{4}e^{-x}.[/tex]

Thus, the required solution of the given IVP is

[tex]y(x)=\dfrac{3}{4}e^x+\dfrac{5}{4}e^{-x}.[/tex]