Assume the random variable x is normally distributed with mean muμequals=8787 and standard deviation sigmaσequals=55. Find the indicated probability. ​P(x less than<7979​)

Respuesta :

Answer:  0.4404

Step-by-step explanation:

Let the random variable x is normally distributed .

Given : Mean : [tex]\mu=\ 87[/tex]

Standard deviation : [tex]\sigma= 55[/tex]

The formula to calculate the z-score :-

[tex]z=\dfrac{x-\mu}{\sigma}[/tex]

For x = 79

[tex]z=\dfrac{79-87}{55}\approx-0.15[/tex]

The p-value = [tex]P(x<79)=P(z<-0.15)[/tex]

[tex]=0.4403823\approx0.4404[/tex]

Hence, the required probability : [tex]P(x<79)=0.4404[/tex]