Respuesta :

Answer:

tan²x + 1 = sec²x is identity

Step-by-step explanation:

* Lets explain how to find this identity

∵ sin²x + cos²x = 1 ⇒ identity

- Divide both sides by cos²x

∵ sin x ÷ cos x = tan x

∴ sin²x ÷ cos²x = tan²x

- Lets find the second term

∵ cos²x ÷ cos²x = 1

- Remember that the inverse of cos x is sec x

∵ sec x = 1/cos x

∴ sec²x = 1/cos²x

- Lets write the equation

∴ tan²x + 1 = 1/cos²x

∵ 1/cos²x = sec²x

∴ than²x + 1 = sec²x

- So we use the first identity sin²x + cos²x = 1 to prove that

 tan²x + 1 = sec²x

∴ tan²x + 1 = sec²x is identity