Eliminate the parameter to find a Cartesian equation of the following curve: x(t) = cos^2 (6t), y(t) = sin^2(6t) Choose the answer from the following: y(x) = 1 + x y(x) = 1 - x y(x) = 1 - 6x

Respuesta :

Answer:

y(x) = 1 - x

Step-by-step explanation:

Given the two parametric equations:

[tex]  x(t)=cos^{2}(6t)  [/tex]  ---(1)

[tex] sin^{2}(6t) [/tex] ----(2)

We can add eq (1) and eq (2) and consider the trigonometric identity:

[tex]  cos^{2}(6t)+sin^(6t) = 1  [/tex]

so,

[tex]   x+y=1  [/tex]

in other way we  can express this like:

[tex] y(x)=1-x [tex].