Last year, Susan had 10,000 to invest. She invested some of it in an account that paid 6%
simple interest per year, and she invested the rest in an account that paid 5% simple interest per year. After one year, she received a total of %560 in interest. How much did she invest in each account?

Respuesta :

Answer:

In the account that paid 6% Susan invest [tex]\$6,000[/tex]

In the account that paid 5% Susan invest [tex]\$4,000[/tex]

Step-by-step explanation:

we know that

The simple interest formula is equal to

[tex]I=P(rt)[/tex]

where

I is the Final Interest Value

P is the Principal amount of money to be invested

r is the rate of interest  

t is Number of Time Periods

Part a) account that paid 6% simple interest per year

in this problem we have

[tex]t=1\ years\\ P=\$x\\r=0.06[/tex]

substitute in the formula above

[tex]I1=x(0.06*1)[/tex]

[tex]I1=0.06x[/tex]

Part b) account that paid 5% simple interest per year

in this problem we have

[tex]t=1\ years\\ P=\$10,000-\$x\\r=0.05[/tex]

substitute in the formula above

[tex]I2=(10,000-x)(0.05*1)[/tex]

[tex]I2=500-0.05x[/tex]

we know that

[tex]I1+I2=\$560[/tex]

substitute and solve for x

[tex]0.06x+500-0.05x=560[/tex]

[tex]0.01x=560-500[/tex]

[tex]0.01x=60[/tex]

[tex]x=\$6.000[/tex]

therefore

In the account that paid 6% Susan invest [tex]\$6,000[/tex]

In the account that paid 5% Susan invest [tex]\$4,000[/tex]