Write the slope-intercept form of the equation for the line.


let's use those two endpoints in the line of (-5 , 2) and (5 , -1)
[tex]\bf (\stackrel{x_1}{-5}~,~\stackrel{y_1}{2})\qquad (\stackrel{x_2}{5}~,~\stackrel{y_2}{-1}) \\\\\\ slope = m\implies \cfrac{\stackrel{rise}{ y_2- y_1}}{\stackrel{run}{ x_2- x_1}}\implies \cfrac{-1-2}{5-(-5)}\implies \cfrac{-3}{5+5}\implies -\cfrac{3}{10}[/tex]
[tex]\bf \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-2=-\cfrac{3}{10}[x-(-5)]\implies y-2=-\cfrac{3}{10}(x+5) \\\\\\ y-2=-\cfrac{3}{10}x-\cfrac{3}{2}\implies y=-\cfrac{3}{10}x-\cfrac{3}{2}+2\implies y=-\cfrac{3}{10}x+\cfrac{1}{2}[/tex]
Answer:
y=-(3/10)x+(1/2)
Step-by-step explanation:
Let
A(-5,2),B(5,-1)
step 1
Find the slope m
m=(-1-2)/(5+5)
m=-3/10
step 2
Find the equation of the line into slope point form
we have
m=-3/10
point A(-5,2)
y-2=(-3/10)(x+5) ----> equation of the line into slope point form
Convert to slope intercept form -----> isolate the variable y
y=-(3/10)x-(15/10)+2
y=-(3/10)x+(5/10)
simplify
y=-(3/10)x+(1/2)